The Fundamental Theorem of Algebra via Linear Algebra
نویسنده
چکیده
Theorem 2 is also consequence of Theorem 1, so the two theorems are equivalent. In fact, the implication Theorem 1 ⇒ Theorem 2 is usually how one first meets the fundamental theorem of algebra in a linear algebra course: it assures us that any complex square matrix has an eigenvector because the characteristic polynomial of the matrix has a complex root. But here, we will prove Theorem 2 without assuming Theorem 1, so we can deduce Theorem 1 as a consequence of Theorem 2. Our argument is a modification of a proof by H. Derksen [1]. It uses an interesting induction. Our starting point is the following lemma.
منابع مشابه
A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملA note on spectral mapping theorem
This paper aims to present the well-known spectral mapping theorem for multi-variable functions.
متن کاملMax-Plus algebra on tensors and its properties
In this paper we generalize the max plus algebra system of real matrices to the class of real tensors and derive its fundamental properties. Also we give some basic properties for the left (right) inverse, under the new system. The existence of order 2 left (right) inverses of tensors is characterized.
متن کاملA fixed point method for proving the stability of ring $(alpha, beta, gamma)$-derivations in $2$-Banach algebras
In this paper, we first present the new concept of $2$-normed algebra. We investigate the structure of this algebra and give some examples. Then we apply a fixed point theorem to prove the stability and hyperstability of $(alpha, beta, gamma)$-derivations in $2$-Banach algebras.
متن کاملOn the X basis in the Steenrod algebra
Let $mathcal{A}_p$ be the mod $p$ Steenrod algebra, where $p$ is an odd prime, and let $mathcal{A}$ be the subalgebra $mathcal{A}$ of $mathcal{A}_p$ generated by the Steenrod $p$th powers. We generalize the $X$-basis in $mathcal{A}$ to $mathcal{A}_p$.
متن کامل